Latitudinal Variation in Cold Hardiness and Body Size in the Boreal Ant species Leptothorax acervorum (Hymenoptera: Formicidae)

JÜRGEN HEINZE, SUSANNE FOITZIK,
VLADILEN E KIPYATKOV & ELENA B LOPATINA

Received: 1997-08-13 / 1997-11-06

--- [Article]

The Myrmicinae species Leptothorax acervorum (Fabricius 1793) is among the ants ranging farthest north in both North America and Eurasia. Workers from 3 populations living in areas with greatly different climates differ in cold hardiness and individual size. Workers from Cape Kindo on the shore of the White Sea (66°33’ N) survived best at low temperatures and were significantly larger than workers from Nürnberg Reichswald (49.5°N), with workers from the St. Petersburg area (60°N) lying between the two extremes. The significance of the findings is discussed.

Key words: Leptothorax acervorum (Fabricius 1793) - Myrmicinae - Bergmann’s rule - hibernation - supercooling

--- [Abhandlung]

Schlüsselbegriffe: Leptothorax acervorum (Fabricius 1793) - Myrmicinae - Bergmann’sche Regel - Überwinterung - Unterkühlung
1 Introduction

Only very few ants are adapted to cold climate and survive in areas with long winters and hard frost. The tiny myrmicine *Leptothorax acervorum* is among the ant species ranging farthest north, both in Eurasia and North America.

It can be found close to the North Cape in Norway, in Northern Alaska, and in the tundra of Eastern and Northern Siberia [HOLGERSEN 1942, ARNOUDI 1968, NIELSEN 1987, HEINZE 1993, HEINZE & HOLLODOBLER 1994]. This is especially surprising as in contrast to other boreal ant genera, such as *Formica*, *Camponotus*, and *Myrmica*, *Leptothorax* do not move into the soil for hibernation but stay year-round in their nests in fallen branches and rotting logs, and thus may be exposed to very deep temperature. Siberian scientists have measured temperatures [TT] of as low as -25°C in *Leptothorax* colonies under a thick layer of snow at air T of -57°C. They found that the supercooling point of hibernating *Leptothorax* was near -40°C [BERMAN et al 1982, LEYRIKH 1989].

Leptothorax acervorum is, however, not restricted to this very harsh environment but may be found in rather high densities in coniferous forests in Central Europe, the Appenine, and the Ilgaz Daglari in Northern Turkey, where TT rarely are that low. We therefore investigated whether *L acervorum* workers from 3 different geographical latitudes respond differently to TT below the freezing point. Furthermore, as previous studies suggested that individual size of ant workers increases with latitude [CUSHMAN et al 1993], a correlation which is more generally known as Bergmann's rule, we examined the body size of workers from the same 3 populations.

2 Material and Methods

Complete colonies of *Leptothorax acervorum* were collected from their nests in driftwood and logs in June 1996 in Cape Kindo near Poyakonda on the Western coast of the White Sea (WS, just on the Polar Circle, 66° 33’ N, Karelian Republic, Russian Federation), from rotting branches in August 1996 in Vyritsa and Pervomajskoe near St Petersburg (SP, 60°N, Russian Federation), and again from rotting branches in September 1996 in Reichswald around Nürnberg and Erlangen (RW, 49.5°N, Germany). In the laboratory, the ants were housed in 3-chambered plastic boxes as previously described [HEINZE & ORTILIUS 1991] and kept at room T. After placing the nests into artificial hibernation conditions (10h 5°C, 14h 0°C) in an incubator, those ants which were used for studies on cold hardiness were transferred in groups of 10 workers each in Eppendorf vials with a perforated lid and exposed to low TT in a Fyrkasion 330-40 cryostat. Previous observations had shown that the duration of exposure to room T does not affect winter mortality.

The supercooling point of arthropods is often determined by quickly decreasing the temperature of a vial containing a study animal. As it has repeatedly been questioned whether this point indeed shows the lowest temperature at which an animal can survive, we allowed the ants to acclimate and TT were reduced stepwise at a rate of -5°C per day until the minimal temperature was reached [HEINZE et al 1996]. Ants were thus exposed to 0°C for 7d (0°C), to 0°C for 1d and to -5°C for 6d (-5°C), to 1d 0°C, 1d -5°C, and 5d -10°C (-10°C) etc. For each tested temperature (-0°C to -20°C at 5°C intervals), eight vials with ten ants each from all populations were used in the cooling experiment. The percentages of surviving ants in the ten groups were compared between the 3 populations. Each worker was used only in one experiment. The experiments were performed directly after the ants had been transferred into the winter incubator and repeated with new ants after two months of artificial hibernation.

Fig 1] ⇒ page 307: Mortality of workers of the ant species *Leptothorax acervorum* (Fabricius 1793) [Hymenoptera: Formicidae: Myrmicinae] from 3 different populations subjected in eight groups of ten workers each to one week at low TT shortly after the beginning of hibernation (0°C, -5°C, -10°C, -15°C on the left side of each graph) and after two months in winter condition (0°C, -10°C, -15°C, -20°C on the right side of each graph). RW: Nürnberg Reichswald (latitude 49.5° N); SP: St. Petersburg area (60° N); WS: Cape Kindo, White Sea (66° 33’ N). For details see text. [⇒ 307].
Fig 1: Mortality of workers of the ant species *Leptothorax acervorum* (Fabricius 1793) [Hymenoptera: Formicidae: Myrmicinae]. [Explanation on page ⇔ 306].
Due to high mortality in colonies from the White Sea during prolonged artificial hibernation, not all experiments could be done with a sufficiently large sample size. In total, 930 workers were used in the experiments at the beginning of winter (RW 320, SP 320, WS 290), and 680 in the experiments two months later (RW 320, SP 320, WS 40).

Body size (head width and Weber's thorax length) was determined by measuring workers under a binocular microscope at 50× magnification.

3 Results

Most workers of *Leptothorax acervorum* survived when subjected to 1 week at 0°C shortly after their colonies had been transferred from room temperature to overwintering conditions, regardless of their provenance. Nevertheless, mortality was significantly higher among ants from Reichswald than in the Russian populations (Kruskal-Wallis H-test, df = 2, $H = 13.96$, $p = 0.0009$, post hoc comparison with Tukey HSD-test: RW - SP: $p = 0.0006$, RW - WS: $p = 0.0004$, SP - WS: $p = 0.881$). Similarly, more ants from Reichswald died when exposed for one week to minimally -5°C ($H = 11.99$, $p = 0.0025$; Tukey HSD-test: RW-SP: $p = 0.039$, RW-WS: $p = 0.002$, SP-WS: $p = 0.251$). Worker mortality strongly increased at lower TT, and about 60% of all workers were killed during one week at minimally -15°C. Worker mortality at lower TT did not differ between the 3 populations (-10°C: $H = 5.204$, $p = 0.074$; -15°C: $H = 2.04$, $p = 0.36$).

Worker mortality did not differ between samples subjected to 0°C at the beginning of hibernation and after approximately two months in winter conditions (Mann-Whitney U-test, RW: $U = 25.5$, $p = 0.285$), but workers survived better at TT of -10°C and -15°C after prolonged hibernation (-10°C, RW: $U = 16.5$, $p = 0.06$; SP: $U = i$, $p = 0.0011$; -15°C, RW: $U = 14$, $p = 0.04$; SP: $U = 0$, $p = 0.0006$). Mortality now was not different between workers from Reichswald and Russia at 0°C ($H = 4.38$, $p = 0.119$) and -10°C (only workers from Reichswald and St. Petersburg: $U = 15$, $p = 0.074$), whereas it was significantly higher in the Reichswald population at lower TT (-15°C: $H = 9.125$, $p = 0.014$; Tukey HSD. RW-SP: $p = 0.005$, RW-WS: $p = 0.949$, SP-WS: $p = 0.154$; -20°C: $H = 12.017$, $p = 0.0025$; Tukey HSD: RW-SP: $p = 0.0022$, RW-WS: $p = 0.0051$, SP-WS: $p = 0.685$).

Body size (head width and Weber's thorax length) was measured in 40 workers from each population. As expected from Bergmann's rule, workers from the White Sea were largest and those from Nürnberg Reichswald near Erlangen were smallest (Weber's thorax length: WS 1.14 ± SD 0.053mm, SP 1.13 ± 0.05mm, RW 1.04 ± 0.04mm; head width: WS 0.74 ± 0.03mm, SP 0.73 ± 0.029mm, RW 0.68 ± 0.03mm. Size differences between the 3 groups were statistically significant (ANOVA, thorax length $F(2, 117) = 60.10$, $p < 0.0001$, headwidth $F(2, 117) = 48.49$, $p < 0.0001$), which according to posthoc comparisons is mainly due to the difference between the two Russian populations and the Reichswald population (Tukey-HSD-test, thorax length: RW-SP $p = 0.0001$, RW-WS $p = 0.0001$, SP-WS $p = 0.132$; headwidth RW-SP $p = 0.001$, RW-WS = 0.001, SP-WS $p = 0.286$; Fig 2).

4 Discussion

As expected, mortality of workers of *Leptothorax acervorum* which were subjected to TT below 0°C showed temporal and geographical variation. Workers survived low TT better after having acclimated to winter conditions, and the mortality was lower in populations from Russia than in the Reichswald population (Fig 1).
Fig 2 (above): Head width in workers of *Leptothorax acervorum* (Fabricius 1793) [Hymenoptera: Formicidae: Myrmicinae] from 3 different latitudes (RW Reichswald, SP St Petersburg, WS Cape Kindo / White Sea). In each population, the head width of 40 workers was measured.

Fig 3 (below): Weber's thorax length in workers of *Leptothorax acervorum* (Fabricius 1793) [Hymenoptera: Formicidae: Myrmicinae] from 3 different latitudes (RW Reichswald, SP St Petersburg, WS Cape Kindo / White Sea). In each population, the thorax length of 40 workers was measured.

Probably because of the low number of colonies from the White Sea available for our study, which limited the number of possible comparisons, a difference in cold hardiness between the two Russian populations could not be substantiated despite differences in mean TT in January and the duration of frost between the two localities.
It would therefore be premature to conclude from this study that the difference between the cold hardiness of ants from different populations results from adaptation to different climate: The Reichswald population could be more sensitive to frost by causes unrelated to geographical latitude, though certainly different average winter TT are the most likely explanation for our result. Geographical and seasonal variation in cold hardiness has been previously reported for a number of arthropods [e.g. BAUST & MILLER 1970, TANAKA 1996]. LEYRIKH [1989] found that the supercooling points of ants drop significantly from summer to winter. In L acervorum from East Siberia, e.g., it falls from -8°C in June to close to -40°C in February owing to an increase in the concentration of polyols in the haemolymph. Supercooling points differed also with longevity: supercooling points in hibernating L acervorum were approx -25°C in nests from Southern Finland but near -40°C in nests from the upper Kolyma area in East Siberia [BERMAN & ZHIGULSKAYA 1995].

Mortality rates of Russian ants were similar to those of L cf canadensis, where about 50% of all workers were killed when subjected to minimally -20°C, and about 80% died at -25°C [HEINZE et al 1996]. Compared to supercooling points reported from Leptothesarax from East Siberia [BERMAN et al 1982, LEYRIKH 1989], the TT survived by the ants in our experiments are rather mild. This might indicate that supercooling points do not always give a reliable estimate of the lowest TT animals can survive for longer periods, but it might also reflect much lower winter TT in East Siberia. Furthermore, a longer exposure to subfreezing TT might increase cold hardiness of ants more strongly than the two months at 0°C in our incubators and lead to increased survival of ants at extremely low TT in nature.

Though the ecological significance of Bergmann's rule in ectotherms is still controversially discussed [MOUSSEAU 1997, PARTRIDGE & COYNE 1997, VAN VOORHIES 1997], there is strong evidence that at least in some taxa body size increases with latitude. CUSHMAN et al [1993] reported that the average body size of ant workers in temperate and boreal Europe increases significantly with latitude. In their analysis they pooled data from different ant species; here we show that workers of L acervorum from the White Sea and St. Petersburg are significantly larger than workers from Erlangen. As data from additional populations [FOITZIK & HEINZE, unpublished] also suggest an increase of body size with latitude, our results probably corroborate Bergmann's rule, though workers from the White Sea are not significantly larger than workers from St. Petersburg with the conservative Tukey's HSD-test (using a less conservative Student-Newman-Keuls test for posthoc comparisons, differences in head width between workers from St. Petersburg and the White Sea are significant with p = 0.044).

The occurrence of Bergmann's rule in ectotherms was explained by both adaptive and non-adaptive hypotheses [e.g. ATKINSON & SIBLY 1997]. Whereas size at maturity is often correlated with fecundity, the growth rate of larvae and the size of adult ant workers does not necessarily determine their fitness; instead, colony growth rate and colony size appear to be of more importance. Indeed, KASPARI & VARGO [1995] have reported that colony size is smaller in ants from the tropics than in ants from temperate or boreal biomes. An analysis of intraspecific geographical variation in colony size would be helpful to understand the causes of this correlation, but it appears that L acervorum is not a good study model in this respect. Colony size appears to be strongly shaped by the type of nest the ants inhabit. Whereas colonies which nested in driftwood on the shore of the White Sea were very large (more than 100 workers), colonies collected from under flat rocks in Alaska very comparatively small, with a mean of 34.1 +/- SD 23.4 workers (9 colonies, [HEINZE & ORTIUS 1991]).
Body size might be related to the amount of fat stored and it was shown that large ant workers endure fasting much longer than small workers [KONDOH 1977, KASPARI & VARGO 1995]. Whether starvation avoidance is the major factor underlying the variation in worker size in boreal habitats in *L. acervorum* is not yet completely clear, but it has been shown that starvation may indeed play an important role in hibernation success in ants [HEINZE et al 1996]. Future studies will focus also on the problem whether size differences are genetically mediated or caused by different environmental conditions.

5 References

ARNOLDI KV [1968]: Zonal'nye zoogeograficheskie i ekologicheskie osobennosti mirmekofauny i naseleniya mura'vev russkoj ravniny.- Zool Zh 47: 1155-1178; Moskva / Rossia.

HEINZE J [1993]: Life histories of subarctic ants.- Arctic 46: 354-358; Calgary / Canada.

HOLGERSEN H [1942]: Ants of northern Norway.- Tromsø Mus Årsh naturhist Avd 63: 01-33; Tromsø / Norge.

KASPARI M & VARGO EL [1995]: Colony size as a buffer against seasonality: Bergmann's rule in social insects.- Am Nat 145: 610-632; Chicago / USA.

KONDOH M [1977]: On the difference of vitality among worker ants under starvation.- Proc. 8th International Congress IUSSI: 68 - 70; Wageningen / Nederland.

MOUSSEAU TA [1997]: Ectotherms follow the converse to Bergmann's rule.- Evolution 51: 630-632; Lawrence / USA.

NIELSEN MG [1987]: The ant fauna (Hymenoptera: Formicidae) in northern and interior Alaska. A survey along the trans-alaskan pipeline and a few highways.- Ent News 98: 74-88; Lancaster / USA.

PARTRIDGE L & COYNE JA [1997]: Bergmann's rule in ectotherms: is it adaptive?- Evolution 51: 632-635; Lawrence / USA.

VAN VOORHIES WA [1997]: On the adaptive nature of Bergmann size clines: a reply to Mousseau, Partridge and Coyne.- Evolution 51: 635-640, Lawrence / USA.
Acknowledgements: Field studies in Russia were supported by an INTAS grant (94-2072), laboratory investigations in Erlangen by the Deutsche Forschungsgemeinschaft (He 1623/7-1). The Frykavision B30-40 freezer was donated by Industrie- und Handelskammer Würzburg. Two anonymous referees improved the manuscript.

Authors' Addresses - Anschriften der Verfasser: Professor Dr Jürgen Heinze & Susanne Foiitzik, Institut für Zoologie I, Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Bundesrepublik Deutschland - Dr Vladilen E Kipyatkov & Dr Elena B Lopatina, Kadetra Entomologij, Biologicheskij Fakultet, Sankt-Peterburgskij Gosudarstvennyi Universitet, Universitetskaya naberezhnaya 7/9, Sankt-Peterburg, 199034, Rossiya.

* * *

Spezielle Aufmerksamkeit widmet der Autor denjenigen Parasitenarten, welche oft als Modellorganismen für spezifische Fragestellungen verwendet werden, die aber in der einschlägigen Literatur oft nur in wenigen Zeilen abgehandelt werden. Im allgemeinen sind die morphologischen Beschreibungen kurz gehalten, und die Systematik wird nur insoweit aufgeführt, daß eine grobe Orientierung im zoologischen System möglich ist.

Auffallend sind die sehr gut gelungenen graphischen Darstellungen der Lebenszyklen der verschiedenen Parasiten, wobei besonderer Wert auf die Beziehung Parasit - Umwelt gelegt wurde. Besonders herausgestellt wurde auch die Tatsache, daß einige Parasitenarten, so z.B. Trypanosoma cruzi, Leishmania major und Entamoeba histolytica als Modellorganismen für die Erforschung grundlegender biologischer Vorgänge wie Mechanismen der Enzymregulation und der Enzymkinetik dienen. Untersuchungen an T brucei brucei zum Austausch genetischen Materials haben zum Verständnis der sexuellen Differenzierung erheblich beigetragen. Ausführlich wird auch die Immunologie parasitenbedingter Erkrankungen besprochen.

Günter Schmahl (Ruhr-Universität Bochum)